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When, for an otherwise unbounded fluid, the unique irrotational flow compatible 
with the instantaneous motion of an immersed body has been calculated, it is 
straightforward to deduce the pressure field from the unsteady form of Bernoulli’s 
equation if the body is rigid. On the other hand, if the body is flexible, a somewhat 
subtle analysis is required to determine the time derivative of velocity potential, 
a$/&, which occurs in that equation. This is because no simple relationship exists 
between the instantaneous form of $ and its form at a nearby instant. 

In the case of two-dimensional flow, however, the two forms of $ for a flexible body 
may be related, not in general by a simple translational and/or rotational mapping 
as for a rigid-body motion, but by a conformal mapping. The example of a flexible 
flat plate is used here to illustrate this approach to calculating the pressure field. 

In the analysis of balistiform motion by elongated-body theov (Lighthill & Blake 
1990), one part of the propulsive force on the fish has magnitude equal to P, the area 
integral of the pressure field just described. This area integral is shown in 93 below 
to take a simple form UM-E in terms of the flow’s niomentumM and kinetic energy 
E per unit length and a certain weighted average U of the plate’s velocity normal to 
itself. Although, in the case of motile fins attached to a rigid body of much greater 
depth, M was found (Lighthill & Blake 1990) to take an enhanced value, no such 
enhancement is found either for the product OM or for E ,  so that P itself is also not 
enhanced. For the relevance of these findings to the efficiency of balistiform motion, 
see Lighthill & Blake (1990). 

1. Introduction 
For the biological background to this analysis, see Lighthill & Blake (1990, 

hereafter referred to as Part 1). The present paper draws attention first of all to 
certain characteristic difficulties of deducing the pressure fields that arise in 
irrotational flows generated by movements of aflexible body. It continues with a two- 
dimensional irrotational-flow calculation of the pressure distribution due to a general 
symmetrical flexing motion of a flat plate, and proceeds to derive a quantity needed 
in elongated-body theories of balistiform locomotion (see Part 1) ; namely, the area 
integral of the pressure over the whole flow field, with the semi-convergent integral 
made precise (for reasons familiar from added-mass theory) by the integration in the 
direction normal to the plate preceding that in the direction parallel to the plate. 
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in an unsteady irrotational flow that vanishes in the far field is 
The classical formula for the excess pressure pe  (excess over hydrostatic pressure) 

Pe = -Pa9/at-iP(V$)*, (1) 

where p is the density and 9 the velocity potential. I n  (l) ,  the presence of the a$/at 
term means that the pressure depends not merely on the velocity potential associated 
with the instantaneous motion of the boundary but also on how the velocity 
potential changes in a short time interval during which the boundary’s position is 
changed. 

This gives rise to no difficulties if the boundary remains rigid. For example, if it 
undergoes a uniform translation in the y-direction with velocity U,  then the whole 
flow field is similarly translated so that the potential q5 takes the form 

giving 

In this case, the classical formula (1) becomes 

P ,  = +PUa$/aY -+P(VW.  (4) 

Its  area integral in the sense noted above can be written as U times the y-component 
of fluid momentum M minus the kinetic energy E ; giving 

UM-E = U(mU)-&dF = +*V. (5)  

Here, the added mass m is defined so that the fluid kinetic energy is *u2 while the 
‘impulse’ of the irrotational flow field in the y-direction is m u ;  which, in addition, 
can be written as the integral of pa$/ay over the fluid region (that is, as the y- 
component of momentum) provided that the integration with respect to y is carried 
out before the integration with respect to  5. In  physical terms this procedure yields 
the y-component of momentum between two parallel planes 5 = k X  where X is 
large ; an important quantity because its rate of change is simply the y-component 
of the force with which the body acts on the fluid, being uncontaminated by the 
overall pressure force acting across those planes (which cannot have any y- 
component). 

When the shape of the body is being altered by flexure, no simple rule such as the 
‘translation ’ formula (2) is available for relating the flow field a t  time t to that a t  
t = 0. On the other hand, for two-dimensional irrotational flows we have the option 
of replacing translation by an appropriate conformal mapping. This idea is used 
below to obtain an expression for the pressure field associated with a general 
symmetrical motion of a flexible flat plate, and to  calculate its area integral in the 
above sense. Choice of this approach to the problem through a conformal mapping 
was made after it was recognized that standard methods which can sometimes be 
used for solving a boundary-value problem on a slightly distorted boundary 
(methods utilizing the derivative of the velocity on the original position of the 
boundary) are of uncertain validity where the velocity field is singular as a t  the edges 
of a flat plate. 

2. Preliminary calculation for a circular cylinder 
A considerably simpler flow, produced by flexing of the boundary of a circular 

cylinder, is used to introduce the conformal-mapping idea. If 2 = X +  iY is a complex 
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2, = 2 + is(t) Z-2n 

3 

variable in the fluid region outside a circular cylinder (21 = 1, then the conformal 

(6)  
mapping 

(where n is a non-negative integer and e(t) is small and real) maps that region into 
a region in the 2, plane subject to a slight distortion symmetrical about the Y-axis 
and antisymmetrical about the X-axis. Its boundary is given parametrically by 

2 = el@, 2, = + iE( t )  e-(2n+l)ie] (7) 

(8) 

thus, the case n = 0 corresponds to a uniform translation with displacement e(t), 

so that to first order in E the radial distortion of the boundary is 

I2,J - 1 = s ( t )  sin (2n+ 1) 8; 

. .  
while positive values of n correspond to various modes of deformation. 

(9) 
If the complex potential w = $+i@ 

(where $ is the stream function) is derived in the distorted fluid-flow region by 
applying the mapping (6) to a complex potential w determined in the undisturbed 
region 121 = 1, then we need to be able to calculate 

(aw/WZt. (10) 

This expression utilizes the conventional bracket notation which signifies rate of 
change of w with time keeping the position 2, constant. Evidently, the derivative 
a$/at occurring in expression (1) for excess pressure is the real part of this derivative 
(10) in which position is held constant. 

Now, the classical formula for partial differentiation after change of variables 
between (2, t )  and (Z,, t) gives 

(11) 

In cases when the rate of deformation is not itself varying with time the left-hand 
side of (11) may be zero, while in other cases its integral may be zero (see below). 
Then the important term contributing to the complex expression (10) (whose real 
part is a$/at) is 

which in the undisturbed state (at t = 0) takes the value 

(awlat), = (aw/at)zt + (aw/az,), (az,/at)z. 

- (az,/at), (awiaz,), = - i6Z-2n(aw/azt), (12) 

- i6Z-2n aw/a2, (13) 

corresponding directly to the right-hand side of (3). 

boundary satisfies 

so that 

Here, the complex potential (9) at time t = 0 associated with the motion (8) of the 

a$/& = 8sin(2n+1)8 on r = 1, where 2 = reie, (14) 

(15) $ = -(2n+1)-16r-(2n+1)sin(2n+1)e 

and w = - i(2n + 1)-162-2n-1. (16) 

The associated contribution to (13) is 
622-"-2 

of which the real part, amounting to 

cos (4n + 2) 8, 62,,-4n-2 

is the contribution to a$/at. 
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The integral of (18) over the fluid region 

r > l ,  0 < 8 < 2 n  (19) 

is absolutely convergent for n > 0 and takes the value zero (since the integral of 
cos (4n + 2 )  8 with respect to 8 is zero). However, for n = 0 it is semi-convergent and in 
terms of X and Y can be written as the integral of 

Proceeding to integrate (20) according to the rule that the integration with respect 
to Y must be carried out first, we obtain the result 

where the loop integral is taken around X 2  + y2 = 1 in the positive sense. 
Needless to say, this calculation for the case n = 0 of uniform translation at  

velocity U = 8 has simply recovered the result (5 )  for the integrated pressure ; thus, 

(22) 
it  gives a contribution 

pal? = mU2 = UM 

to the area integral of -pa+/at since the added mass for a circular cylinder of unit 
radius is pn. For positive values of n, however, the part -pa+/at  of the excess 
pressure (1) has zero area integral so that in these cases the integrated pressure is 
minus the kinetic energy, and is readily calculated from (15) as 

-p7cd2(2n+ l)-l. (23 1 
This example illustrates the possibility that the contribution to thrust from such an 
area integral of the pressure could be negative ; although we shall find it to be positive 
in the case ( $ 4 )  relevant to balistiform swimming. 

Before proceeding to the case of the flat plate, we may briefly indicate the reason 
why in the above analysis it was justifiable to ignore the left-hand side of (1 1). In that 
expression the function w(2, t )  represents the complex potential of the flow at time 
t around the distorted circular cylinder mapped onto the region outside the 
undistorted cylinder. Accordingly, if the rate of distortion B is unchanging at  time 
t = 0, then so is w(2, t )  and the left-hand side of (1 1) vanishes. When on the other hand 
8 is non-zero, the corresponding contribution to a+/at by (15) is 

- (2n+ i)-1&-(2n+')sin (2n+ i ) O ,  (24) 

which is an odd function of Y = rsine and contributes nothing to the area integral 
of the pressure. 

3. Calculation for a flat plate 

plate by applying the classical conformal mapping 
From the conclusions of $2 for a circular cylinder we move to calculations for a flat 

z = Z+Z-f (25 1 

-2  < x < 2,  y = 0 ,  since z = x+iy = 2cos8 for Z = eie. (26) 

which maps the circle 121 = 1 onto a strip 
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The variable 2, defined by equation (6) and having the boundary values (7) has these 
boundary values, to first order in e,  mapped onto 

(27) zt = 2, + Z;l= 2 cos 8 - 2e e-(Pn+l)io sin 8, 

of which the imaginary part (representing the normal displacement of the boundary) 
is 

yt = 2esin8sin(2n+1)8. (28) 

This form (28) for the normal displacement of the flat-plate boundary (26) allows 
us to characterize a general symmetrical displacment of the flat plate, 

y = E ( t ) f ( X )  (-2 < z < 2), (29) 

as a linear combination of such terms (28) vanishing at  z = f 2  (where 8 = 0 or n) 
with a uniform translation 

y = e( t )  b where b = f(2) = f (-2). (30) 

Specifically, it allows us to use new mappings as follows, defined in Fourier-series 
form. 

(31) 
Generalizing (6), we put m 

0 
Z ,  = 2 + is(t) x a, Z-',, 

where a,, a,, . . . are real coefficients, and write 

zt = ie(t)b+Zt+Z;l. (32) 

The value of (32) on the boundary (26), to first order in e,  has imaginary part 

I m 

b+2s in8~aa , s in (2n+1)8  . 
0 

(33) 

Thus, the general displacement (29) can be so described provided that the function 

(34) r f ( 4  - b1/(2 sin 4, 
which by (30) is regular at 8 = 0 and IC, has the Fourier-series representation 

00 x a, sin (2n + 1 ) 8. 
0 

(35) 

The chain of three conformal mappings (32), (31) and (25) maps the fluid region 
around the displaced flat plate (represented by the complex variable z t )  into the fluid 
region around the undisplaced flat plate (represented by z). By analogy with (1 1) we 
calculate the term a+/&' in the excess pressure (1) as 

where 
(36) 

(37) 

and find as before that the left-hand side of this equation can be taken as zero when 
t: = 0, and otherwise as an odd function of y making no contribution to the area 
integral of the pressure. At time t = 0, then, the important contribution to t@/at is 
the real part of 

- (az,/at) ( a q a z ) .  (38) 
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Here, the value of az,/al to first order in E ,  by (31) and (32), is 

1 m 
b + (2 - 2-l) a, . V z n + l )  

0 
(39) 

and it is now necessary to obtain aw/az. 
The normal velocity on the plate (33) can be written as the time derivative of the 

(40) 
right-hand side, m 

( a $ / a t ~ ) ~ - ~  = 6 b + x U,[COS 2n0- cos 2(n+ 1) el 
i o  

so that the condition corresponding to (14) in the circle plane is 

(a$/a~)r-l  = (2 sin 0) (a$/aY)y-o 

I 00 

= 6 2b s i n 8 + x  a,[ -sin (2n- 1) 0+2 sin (2n+ 1) 0-sin (2n+3) 61 . (41) 

To write down the corresponding value of 4 for general r we have to treat with special 
care the term for n = 0 where the term in square brackets becomes 3 sin 0- sin 319. We 
obtain 

{ 0 

$ = 6 { - r-'(2b + 3a0) sin 8 + ho r-3 sin 30 
m 

+ C an[(2n - 1)-l r-(2n-1) sin (2n- 1) 0 

- 2(2n + l)-l d Z n + l )  sin (2n + 1) 0 + (2n + 3)-l r-(2n+3) sin (2n + 3) 01 I 1 

(42) 

and therefore 

w = ii. - ( 2 b + 3 ~ , ) 2 - ~ + ~ ~ 2 - ~  

+ (2n + 31-1 2 - ( 2 n + 3  )I}. (43) 

i 
m 

+ an[(2n- 1 ) - 1 2 - ( 2 f l - l )  - 2(2n + 1)-12-(2,+1) 

1 

Finally, we infer from (39) and (43) that the product (38) whose real part 
represents the essential contribution to a#/& takes the form 

00 

I}. (44) -ao 2 - 4  - 2 a [ 2 - 2 n  - 22-(2n+2) + Z-(2,+4) 

1 

When the two series in (44) are multiplied together, they yield a Laurent series of 
which the first term, in 2-2, has real part 

(45) i 2 ( b  +ao) (2b + 3a0 - a,) r+ cos 20 

and the others are terms in ,T4, 2-6, . . . with real parts proportional to 

r-4 COB 40, r-6 cos 60, . . . . (46) 

Now when we seek the area integral 

(47) 
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over the fluid region outside the flat plate (26), we can obtain it via the mapping (25) 
as the corresponding area integral 

/(a$/at) Idz/dZI2 dXdY (48) 

over the fluid region outside the circular cylinder. Here, by (25), 

Idz/dZI2 = 1 - 2 P  cos 28 + r-4 where Z = r eis. 149) 
Accordingly, the term (45) makes a contribution to the integral (48), with Idz/dZI2 
substituted from (49), equal to 

- 27ci2(b +ao) (2b + 3a0 -al) ; (50) 

where a contribution -ni2 comes from the calculation (21) of the semi-convergent 
integral of i2r-2 cos 28, while an equal contribution comes from the absolutely 
convergent integral of rco 12n 

J, J i2( - 2 ~ ~  cos2 28) rdrd8  = -xi2. 
0 

By contrast, the remaining terms (46) when substituted in (48) with Idz/dZI2 given 
by (49) yield absolutely convergent integrals all of which take the value zero. This 
is because the integral with respect to 8 of any of those terms, either by itself or 
multiplied by the cos28 in (49), is equal to zero. 

A physical interpretation can be given to the value (50) calculated for the integral 
(47) when we take into account the fact that the Fourier-series (35) represents the 
function (34). This gives 

b+ao = b+$rr 'r i[f(z)-b]d8 0 = r-'rf(Z)a8 0 (52) 

and 
a,-uo = 27c-1 +[f(z)-b] [(sin38-sinO)/sin8]de 1 

l = 27c-1 f (2) cos 28 d8, (53) 

2b + 3a0 - a, = 2n-l 2) (1 - cos 28) d8 If( 
= 47c-' 1 f (2) sin2 8 d8, (54) 

so that 

which is related to the momentum 

(55)  

calculated in Part 1, equation (10). 
It follows that the integral of the excess pressure (1) includes a term 

[(-pa$/at)dzdy = OM, 

where from (50), (52), (54) and (55) we have written 

8= i(b+aO) = 7c-l if(x)d8 s: 
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as a weighted mean of the velocity of the flat plate normal to itself, the average being 
taken with respect to 8. To sum up, the overall area integral of the excess pressure 
( 1 )  can be written in a form of attractively simple appearance analogous to 
expression ( 5 )  ; namely, 

where E is the kinetic energy (integral of +~P(V#)~ over the fluid region), M the y- 
component of momentum, and o the average of the velocity of the flat plate normal 
to itself taken with respect to 8. 

OM-E, (58) 

4. Case relevant to balistiform swimming 
The general theory of $ 3  is now applied in a case relevant to balistiform swimming. 

This is the case where a flat rigid body of depth 2s is extended by equal dorsal and 
ventral fins, each of depth 1-s, so that the overall cross-section has depth 21. The fins 
are symmetrically moved, each being rygidly rotated with angular velocity w about 
the stationary body. 

This is a case when the velocity of the flat plate normal to itself is 

0 (0 < 1x1 < s), w(lxl-s) (s < 1x1 < I ) .  

The average U of expression (59) with respect to 8, where 

(59) 

2 = icose, s = zcosa, (60) 

(61) 
is 

0 = 27t-11 w ~ ( c o s  8 - cos a) = 2 x - ~ ( s i n  a - a cos a)  ; 

where, by symmetry, the averaging is simply carried out for 0 < 8 < &I. 

defined in (60) becomes rather small and so the velocity 
8 is considerably smaller than the velocity w(1-s) of the fin tip, by an amount 

In the limiting case of small fins, with 1-s small compared with s, the angle a 
averaged with respect to 

U[w(Z-s)]-l = 2x-1(sina-acosa) ( I - c o ~ a ) - ~  - 4a/37t as a+O. (62) 

This reduction factor affecting the average velocity D contrasts with the behaviour 
of the momentum M ,  whose value is enhanced (as emphasized in Part 1 and Lighthill 
1990) relative to its value for the fins on their own. 

Specifically, the value ofM calculated for this case in Part 1, equation ( l l ) ,  can be 
written 

We infer that its non-dimensional form 

M = 2pw13(sin a - a cos a - + sin3 a). (63) 

(64) 
2(sin a - a cos 01 - $sin3 a) 32 

pw(l - 4 3  (1 - cos a)3 1501 
N- as a+O. - - M 

This enhancement for small a exactly counteracts the reduction for small 01 shown in 
(62), in such a way that the product tends to a finite limit: 

DM 4(sin a -a cos a) (sin a -a cos a-+ sin3 a) 128 
+-- as a+O. (65) 

Figure 1 (a)  shows that the non-dimensional form of OM specified in (65) does in fact 
change very little indeed as s / l  varies from 0 (where a = in and the non-dimensional 
form (65) takes the value 8/(37t) = 0.849) to 1 (where the limiting value 128/(45n) = 
0.905 applies). 

- 
p w 2 ( 1 - ~ ) 4  - 7t( 1 - cos a)4 457t 
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S I l  
FIQURE 1. (a) Non-dimensional form (65) of the product of averaged velocity 0 and momentum M .  
(b )  Non-dimensional form (66) of the kinetic energy E .  (c) Non-dimensional form (67), obtained by 
subtracting (b )  from (a), of the area integral of excess pressure. 

Similarly, calculation of the kinetic energy E by standard methods shows that the 
ratio 

changes little (figure 1 b)  as s/Z varies from 0, where this ratio takes the value l /n  = 
0.318, to 1 where the same ratio takes a limiting value 8/(9n) = 0.283. Physically, 
this limiting value can be simply interpreted in terms of the sum of those localized 
kinetic energies of the fluid motions that would be associated with each fin movement 
separately in the presence of an extremely deep body. 

Finally, figure 1 ( c )  shows the difference between the ratios (65) and (66), which by 
(58) gives the non-dimensional form 

of the area integral of excess pressure. We see that this changes little as s/l  varies 
from 0, where the non-dimensional form (67) takes the value 5/(3~) = 0.531, to 
s/Z = 1 where it takes the limiting value 88/(45n) = 0.622. 

The conclusions of this section in the context of the analysis in Part 1 imply that 
in balistiform swimming the thrust developed, according to elongated-body theory, 
can be written in two parts, one of which (the rate of shedding, across a posterior 
plane, of momentum associated with fin movements) is substantially enhanced for 
fins of modest depth attached to a deep body, while the other term, calculated above 
(the area integral of excess pressure across the same plane), remains positive but 
relatively smaller in magnitude and is not subject to any similar enhancement. For 
the biological significance of these conclusions, see Part 1. 
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